Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1354479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444856

RESUMO

Introduction: The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods: In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results: We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-ß1 (M(IL-10+TGF-ß1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-ß1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-ß1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-ß1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion: Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.


Assuntos
Interleucina-10 , Traumatismos da Medula Espinal , Humanos , Animais , Camundongos , Fator de Crescimento Transformador beta1 , Proteômica , Secretoma , Traumatismos da Medula Espinal/terapia
2.
Biomater Adv ; 159: 213798, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364446

RESUMO

Polymer biomaterials are being considered for tissue regeneration due to the possibility of resembling different extracellular matrix characteristics. However, most current scaffolds cannot respond to physical-chemical modifications of the cell microenvironment. Stimuli-responsive materials, such as electroactive smart polymers, are increasingly gaining attention once they can produce electrical potentials without external power supplies. The presence of piezoelectricity in human tissues like cartilage and bone highlights the importance of electrical stimulation in physiological conditions. Although poly(vinylidene fluoride) (PVDF) is one of the piezoelectric polymers with the highest piezoelectric response, it is not biodegradable. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a promising copolymer of poly(hydroxybutyrate) (PHB) for tissue engineering and regeneration applications. It offers biodegradability, piezoelectric properties, biocompatibility, and bioactivity, making it a superior option to PVDF for biomedical purposes requiring biodegradability. Magnetoelectric polymer composites can be made by combining magnetostrictive particles and piezoelectric polymers to further tune their properties for tissue regeneration. These composites convert magnetic stimuli into electrical stimuli, generating local electrical potentials for various applications. Cobalt ferrites (CFO) and piezoelectric polymers have been combined and processed into different morphologies, maintaining biocompatibility for tissue engineering. The present work studied how PHBV/CFO microspheres affected neural and glial response in spinal cord cultures. It is expected that the electrical signals generated by these microspheres due to their magnetoelectric nature could aid in tissue regeneration and repair. PHBV/CFO microspheres were not cytotoxic and were able to impact neurite outgrowth and promote neuronal differentiation. Furthermore, PHBV/CFO microspheres led to microglia activation and induced the release of several bioactive molecules. Importantly, magnetically stimulated microspheres ameliorated cell viability after an in vitro ROS-induced lesion of spinal cord cultures, which suggests a beneficial effect on tissue regeneration and repair.


Assuntos
Compostos Férricos , Polímeros de Fluorcarboneto , Polímeros , Polivinil , Tecidos Suporte , Humanos , Tecidos Suporte/química , Microesferas , Cobalto , Hidroxibutiratos/farmacologia , Poliésteres/farmacologia
3.
Pharmaceutics ; 15(5)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242797

RESUMO

The failure of axons to regenerate after a spinal cord injury (SCI) remains one of the greatest challenges in neuroscience. The initial mechanical trauma is followed by a secondary injury cascade, creating a hostile microenvironment, which not only is not permissive to regeneration but also leads to further damage. One of the most promising approaches for promoting axonal regeneration is to maintain the levels of cyclic adenosine monophosphate (cAMP), specifically by a phosphodiesterase-4 (PDE4) inhibitor expressed in neural tissues. Therefore, in our study, we evaluated the therapeutic effect of an FDA-approved PDE4 inhibitor, Roflumilast (Rof), in a thoracic contusion rat model. Results indicate that the treatment was effective in promoting functional recovery. Rof-treated animals showed improvements in both gross and fine motor function. Eight weeks post-injury, the animals significantly recovered by achieving occasional weight-supported plantar steps. Histological assessment revealed a significant decrease in cavity size, less reactive microglia, as well as higher axonal regeneration in treated animals. Molecular analysis revealed that IL-10 and IL-13 levels, as well as VEGF, were increased in the serum of Rof-treated animals. Overall, Roflumilast promotes functional recovery and supports neuroregeneration in a severe thoracic contusion injury model and may be important in SCI treatment.

4.
Adv Healthc Mater ; 12(17): e2202803, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36827964

RESUMO

Adipose tissue-derived stem cells (ASCs) have been shown to assist regenerative processes after spinal cord injury (SCI) through their secretome, which promotes several regenerative mechanisms, such as inducing axonal growth, reducing inflammation, promoting cell survival, and vascular remodeling, thus ultimately leading to functional recovery. However, while systemic delivery (e.g., i.v. [intravenous]) may cause off-target effects in different organs, the local administration has low efficiency due to fast clearance by body fluids. Herein, a delivery system for human ASCs secretome based on a hydrogel formed of star-shaped poly(ethylene glycol) (starPEG) and the glycosaminoglycan heparin (Hep) that is suitable to continuously release pro-regenerative signaling mediators such as interleukin (IL)-4, IL-6, brain-derived neurotrophic factor, glial-cell neurotrophic factor, and beta-nerve growth factor over 10 days, is reported. The released secretome is shown to induce differentiation of human neural progenitor cells and neurite outgrowth in organotypic spinal cord slices. In a complete transection SCI rat model, the secretome-loaded hydrogel significantly improves motor function by reducing the percentage of ameboid microglia and systemically elevates levels of anti-inflammatory cytokines. Delivery of ASC-derived secretome from starPEG-Hep hydrogels may therefore offer unprecedented options for regenerative therapy of SCI.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Glicosaminoglicanos , Preparações de Ação Retardada , Secretoma , Traumatismos da Medula Espinal/tratamento farmacológico , Heparina , Células-Tronco Neurais/metabolismo , Medula Espinal , Tecido Adiposo , Hidrogéis , Polietilenoglicóis/metabolismo
5.
J Biomed Mater Res A ; 111(1): 35-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36069387

RESUMO

Electroactive smart materials play an important role for tissue regenerative applications. Poly(vinylidene fluoride) (PVDF) is a specific subtype of piezoelectric electroactive material that generates electrical potential upon mechanical stimulation. This work focuses on the application of piezoelectric PVDF films for neural differentiation. Human neural precursor cells (hNPCs) are cultured on piezoelectric poled and non-poled ß-PVDF films with or without a pre-coating step of poly-d-lysine and laminin (PDL/L). Subsequently, hNPCs differentiation into the neuronal lineage is assessed (MAP2+ and DCX+ ) under static or dynamic (piezoelectric stimulation) culture conditions. The results demonstrate that poled and coated ß-PVDF films induce neuronal differentiation under static culture conditions which is further enhanced with mechanical stimulation. In silico calculations of the electrostatic potential of different domains of laminin, highlight the high polarity of those domains, which shows a clear preference to interact with the varying surface electric field of the piezoelectric material under mechanical stimulation. These interactions might explain the higher neuronal differentiation induced by poled ß-PVDF films pre-coated with PDL/L under dynamic conditions. Our results suggest that electromechanical stimuli, such as the ones induced by piezoelectric ß-PVDF films, are suitable to promote neuronal differentiation and hold great promise for the development of neuroregenerative therapies.


Assuntos
Laminina , Células-Tronco Neurais , Humanos , Eletricidade , Laminina/farmacologia , Polivinil/farmacologia , Estimulação Elétrica
6.
ACS Appl Bio Mater ; 4(9): 6604-6618, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006964

RESUMO

Repair in the human nervous system is a complex and intertwined process that offers significant challenges to its study and comprehension. Taking advantage of the progress in fields such as tissue engineering and regenerative medicine, the scientific community has witnessed a strong increase of biomaterial-based approaches for neural tissue regenerative therapies. Electroactive materials, increasingly being used as sensors and actuators, also find application in neurosciences due to their ability to deliver electrical signals to the cells and tissues. The use of electrical signals for repairing impaired neural tissue therefore presents an interesting and innovative approach to bridge the gap between fundamental research and clinical applications in the next few years. In this review, first a general overview of electroactive materials, their historical origin, and characteristics are presented. Then a comprehensive view of the applications of electroactive smart materials for neural tissue regeneration is presented, with particular focus on the context of spinal cord injury and brain repair. Finally, the major challenges of the field are discussed and the main challenges for the near future presented. Overall, it is concluded that electroactive smart materials play an ever-increasing role in neural tissue regeneration, appearing as potentially valuable biomaterials for regenerative purposes.


Assuntos
Materiais Inteligentes , Materiais Biocompatíveis/uso terapêutico , Humanos , Regeneração Nervosa , Medicina Regenerativa , Engenharia Tecidual
7.
Biochim Biophys Acta Mol Basis Dis ; 1865(8): 2048-2059, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412792

RESUMO

Uncover the initial cause(s) underlying Alzheimer's disease (AD) pathology is imperative for the development of new therapeutic interventions to counteract AD-related symptomatology and neuropathology in a timely manner. The early stages of AD are characterized by a brain hypometabolic state as denoted by faulty glucose uptake and utilization and abnormal mitochondrial function and distribution which, ultimately, culminates in synaptic "starvation" and neuronal degeneration. Importantly, it was recently recognized that the post-translational modification ß-N-acetylglucosamine (O-GlcNAc) modulates mitochondrial function, motility and distribution being proposed to act as a nutrient sensor that links glucose and the metabolic status to neuronal function. Using post-mortem human brain tissue, brain samples from the triple transgenic mouse model of AD (3xTg-AD) and in vitro models of AD (differentiated SH-SY5Y cells exposed to AD-mimicking conditions), the present study is aimed to clarify whether O-GlcNAcylation, the posttranslational modification of intracellular proteins by O-GlcNAc, contributes to "mitochondrial pathology" in AD and its potential as a therapeutic target. A reduction in global O-GlcNAcylation levels was observed in the brain cortex and hippocampus of AD subjects. Moreover, GlcNAcylation levels are higher in mature mice but the levels of this posttranslational modification are lower in 3xTg-AD mice when compared to control mice. The in vitro models of AD also exhibited a marked reduction in global O-GlcNAcylation levels, which was strongly correlated with hampered mitochondrial bioenergetic function, disruption of the mitochondrial network and loss of cell viability. Conversely, the pharmacological modulation of O-GlcNAcylation levels with Thiamet-G restored O-GlcNAcylation levels and cell viability in the in vitro models of AD. Overall, these results suggest that O-GlcNAcylation is involved in AD pathology functioning as a potential link between mitochondrial energetic crisis and synaptic and neuronal degeneration. This posttranslational modification represents a promising therapeutic target to tackle this devastating neurodegenerative disease.


Assuntos
Acetilglucosamina/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Mitocôndrias/patologia , Processamento de Proteína Pós-Traducional , Acetilglucosamina/análise , Acilação , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo
8.
Ageing Res Rev ; 46: 32-41, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29787816

RESUMO

Since the first clinical case reported more than 100 years ago, it has been a long and winding road to demystify the initial pathological events underling the onset of Alzheimer's disease (AD). Fortunately, advanced imaging techniques extended the knowledge regarding AD origin, being well accepted that a decline in brain glucose metabolism occurs during the prodromal phases of AD and is aggravated with the progression of the disease. In this sense, in the last decades, the post-translational modification O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) has emerged as a potential causative link between hampered brain glucose metabolism and AD pathology. This is not surprising taking into account that this dynamic post-translational modification acts as a metabolic sensor that links glucose metabolism to normal neuronal functioning. Within this scenario, the present review aims to summarize the current understanding on the role of O-GlcNAcylation in neuronal physiology and AD pathology, emphasizing the close association of this post-translational modification with the emergence of AD-related hallmarks and its potential as a therapeutic target.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Glucose/metabolismo , Neurônios/metabolismo , Acetilglucosamina/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Humanos , Neurônios/patologia , Processamento de Proteína Pós-Traducional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...